KAMI MENYEDIAKAN BERBAGAI MATERI TENTANG KIMIA. SEMOGA BERMANFAAT!

Senin, 19 November 2012

Tabel Periodik

Satu prestasi intelektual yang terbesar dalam kimia adalah tabel periodik unsur. Tabel periodik dapat dicetak dalam satu lembar kertas, tetapi apa yang terkandung di dalamnya dan apa yang dapat diberikan kepada kita sangat banyak dan tidak ternilai. Tabel ini adalah hasil jerih payah tak kenal lelah, yang berawal dari zaman Yunani, untuk mengetahui sifat materi sebenarnya. Sem ini dapat dikatakan kitab sucinya kimia. Nilai sistem periodik bukan hanya pada organisasi informasi yang telah diketahui, tetapi juga kemampuannya memprediksi sifat yang belum diketahui. Keampuhan sesungguhnya tabel periodik terletak di sini.

a. Usulan-usulan sebelum Mendeleev

Konsep unsur merupakan konsep yang sangat tua, sejak jaman Yunani, Menurut filsuf Yunani, materi dibentuk atas empat unsur: tanah, air, api dan udara. Pandangan ini perlahan ditinggalkan, dan akhirnya di abad 17 definisi unsur yang diberikan oleh kimiawan Inggris Robert Boyle (16271691) menggantikan definisi lama tadi. Boyle menyatakan bahwa unsur adalah zat yang tidak dapat diuraikan menjadi zat yang lebih sederhana.
Lavoisier mengusulkan daftar unsur dalam bukunya “Traite Elementire de Chemie”. Walaupun ia memasukkan cahaya dan panas dalam daftarnya, anggota lain daftar adalah apa yang kita sebut sebagai unsur sampai saat ini. Selain itu, ia menambahkan pada daftar unsur-unsur yang belum dideteksi tetapi ia yakini keberadaannya. Misalnya, khlorin pada waktu itu belum diisolasi, tetapi ia menambahkannya pada tabel sebagai radikal dari asam muriatik. Demikian juga, natrium dan kalium ada juga dalam tabel.
Di awal abad 19, unsur-unsur ini diisolasi dengan elektrolisis, dan daftar unsur perlahan diperluas. Di pertengahan abad 19, analisis spektroskopi, metoda bari mendeteksi unsur dikenalkan dan mempercepat pertambahan daftar ini. Walaupun disambut gembira oleh kimiawan, masalahmasalh baru muncul. Salah satu pertanyaan adalah ‘Apakah jumlah unsur terbatas?’ dan pertanyaan lain adalah ‘Apakah sifat unsur-unsur diharapkan akan mempunyai keteraturan tertentu?’
Penemuan unsu-unsur baru mengkatalisi diskusi-diskusi semacam ini. Ketika iodin ditemukan di tahun 1826, kimiawan Jerman Johann Wolfgang Döbereiner (1780-1849) mencatat kemiripan antara unsur ini dengan unsur yang telah dikenal khlorin dan bromin. Ia juga mendeteksi trio unsur mirip lain. Inilah yang dikenal dengan teori triade Döbereiner.
Tabel 5.1 Triade Döbereiner
litium (Li)kalsium (Ca)Khlorin (Cl)sulfur (S)mangan (Mn)
Natrium (Na)stronsium (Sr)Bromin (Br)selenium (Se)khromium (Cr)
kalium (K)barium (Ba)iodin (I)telurium (Te)Besi (Fe)

b. Prediksi Mendeleev dan kebenarannya

Banyak ide pengelompokan unsur yang lain yang diajukan tetapi tidak memuaskan masyarakat ilmiah waktu itu. Namun, teori yang diusulkan oleh kimiawan Rusia Dmitrij Ivanovich Mendeleev (1834-1907), dan secara independen oleh kimiawan Jerman Julius Lothar Meyer (1830-1895) berbeda dengan usulan-usulan lain dan lebih persuasif. Keduanya mempunyai pandangan sama sebagai berikut:
Pandangan Mendeleev dan Meyer
  1. Daftar unsur yang ada waktu itu mungkin belum lengkap.
  2. Diharapkan sifat unsur bervariasi secara sistematik. Jadi sifat unsur yang belum diketahui dapat diprediksi.
Awalnya teori Mendeleev gagal menarik perhatian. Namun, di tahun 1875, ditunjukkan bahwa unsur baru galium ditemukan oleh kimiawan Perancis Paul Emile Lecoq de Boisbaudran (18381912) ternyata bukan lain adalah eka-aluminum yang keberadaan dan sifatnya telah diprediksikan oleh Mendeleev. Jadi, signifikansi teori Mendeleev dan Meyer secara perlahan diterima. Tabel 5.2 memberikan sifat yang diprediksi oleh Mendeleev untuk unsur yang saat itu belum diketahui ekasilikon dan sifat germanium yang ditemukan oleh kimiawan Jerman Clemens Alexander Winkler (1838-1904).
Tabel 5.2 Prediksi sifat unsu eka-silikon oleh Mendeleev dan perbandingannya dengan sifat yang kemudian ditemukan.
Sifateka-silicongermanium
Massa atom relatif7272,32
Rapat massa5,55,47
Volume atom1313,22
Valensi44
Kalor jenis0,0730,076
Rapat jenis dioksida4,74,703
Titik didih tetrakhlorida (°C)<10086
Mendeleev mempublikasikan tabel yang dapat dianggap sebagai asal mula tabel periodik modern. Dalam menyiapkan tabelnya, Mendeleev awalnya menyusun unsur berdasarkan urutan massa atomnya, sebagaimana pendahulunya. Namun, ia menyatakan keperiodikan sifat, dan kadang menyusun ulang unsur-unsur, yang berakibat membalikkan urutan massa atom.
Lebih lanjut, situasinya diperumit sebab prosedur menentukan massa atom belum distandarkan, dan kadang kimiawan mungkin menggunakan massa atom yang berbeda untuk unsur yang sama. Dilema ini secara perlahan diatasi setelah International Chemical Congress (Kongres ini diadakan di tahun 1860 di Karlsruhe, Jerman. Tujuan kongres ini untuk mendiskusikan masalah penyatuan massa atom. Dalam kesempatan ini Cannizzaro mengenalkan teori Avogadro.) pertama yang dihadiri oleh Mendeleev, namun kesukaran-kesukaran tetap ada.
Dengan mendasarkan pada valensi dalam menentukan massa atom, Mendeleev sedikit banyak menyelesaikan masalah (Tabel 5.3).
Tabel 5.3 Tabel Periodik awal Mendeleev (1869).

c. Tabel Periodik dan konfigurasi elektron

Tabel periodik secara terus menerus bertambah unsurnya setelah tabel periodik diusulkan Mendeleev. Sementara, muncul berbagai masalah. Salah satu masalah penting adalah bagaimana menangani gas mulia, unsur transisi dan unsur tanah jarang. Semua masalah ini dengan baik diselesaikan dan membuat tabel periodik lebih bernilai. Tabel periodik, kitab suci kimia, harus dirujuk secara rutin.
Golongan baru gas mulia dengan mudah disisipkan di antara unsur positif yang sangat reaktif, logam alkali (golongan 1) dan unsur negatif yang sangat reaktif, halogen (golongan 7).
Unsur logam transisi diakomodasi dalam tabel periodik dengan menyisipkan periode panjang walaupun rasionalnya tidak terlalu jelas. Masalah yang nyata adalah lantanoid. Lantanoid ditangani sebagai unsur “ekstra” dan ditempatkan secara marjinal di luar bagian utama tabel periodik. Namun, sebenarnya prosedur ini tidak menyelesaikan masalah utama. Pertama, mengapa unsur ekstra ini ada tidak jelas, bahkan lebih menjadi teka-teki adalah pertanyaan: apakah ada batas jumlah unsur dalam tabel periodik? Karena ada unsur-unsur yang sangat mirip, sangat sukar untuk memutuskan berapa banyak unsur dapat ada di alam.
Teori Bohr dan percobaan Moseley menghasilkan penyelesaian teoritik masalah-masalah ini. Penjelasan tabel periodik dari periode pertama sampai periode ketiga dapat dijelaskan dengan teori konfigurasi elektron yang dipaparkan di bab 4. Periode pertama (1H dan 2He) berkaitan dengan proses memasuki orbital 1s. Demikian juga periode kedua (dari 3Li sampai 10Ne) berkaitan dengan pengisian orbital 1s, 2s dan 2p, dan periode ke-3 (dari 11Na sampai 18Ar) berkaitan dengan pengisian orbital 1s, 2s, 2p, 3s dan 3p.
Periode panjang dimulai periode ke-4. Penjelasan atas hal ini adalah karena bentuk orbital d yang berbeda drastis dari lingkaran, dan jadi energi elektron 3d bahkan lebih tinggi dari 4s. Akibatnya, dalam periode ke-4, elektron akan mengisi orbital 4s (19K dan 20Ca) segera setelah pengisian orbital 3s dan 3p, melompati orbital 3d. Kemudian elektron mulai menempati orbital 3d. Proses ini berkaitan dengan sepuluh unsur dari 21Sc sampai 30Zn. Proses pengisian orbital 4p selanjutnya berkaitan dengan enam unsur dari 31Ga sampai 36Kr. Inilah alasan mengapa periode ke-4 mengandung 18 unsur bukan 8. Energi elektron orbital 4f jauh lebih tinggi dari orbital 4d dan dengan demikian elektron 4f tidak memainkan peran pada unsur periode ke-4.
Tabel 5.4a Konfigurasi elektron atom 1H-54Xe. Tabel 5.4b Konfigurasi elektron atom (55Cs-103Lr).
Periode ke-5 mirip dengan periode ke-4. Elektron akan mengisi orbital 5s, 4d dan 5p dalam urutan ini. Akibatnya periode ke-5 akan memiliki 18 unsur. Orbital 4f belum terlibat dan inilah yang merupakan alasan mengapa jumlah unsur di periode 5 adalah 18.
Jumlah unsur yang dimasukkan dalam periode ke-6 berjumlah 32 sebab terlibat 7×2 = 14 unsur yang berkaitan dengan pengisian orbital 4f. Awalnya elektron mengisi orbital 6s (55Cs dan 56Ba). Walaupun ada bebrapa kekecualian, unsur dari 57La sampai 80Hg berkaitan dengan pengisian orbital 4f dan kemudian 5d. Deret lantanoid (sampai 71Lu) unsur tanah jarang berkaitan dengan pengisian orbital 4f. Setelah proses ini, enam unsur golongan utama (81Tl sampai 86Rn) mengikuti, hal ini berkaitan dengan pengisian orbital 6p.
Periode ke-7 mulai dengan pengisian orbital 7s (87Fr dan 88Ra) diikuti dengan pengisian orbital 5f menghasilkan deret aktinoid unsur tanah jarang (dari 89Ac sampai unsur no 103). Dunia unsur akan meluas lebih lanjut, tetapi di antara unsur-unsur yang ada alami, unsur dengan nomor atom terbesar adalah 92U. Unsur setelah 92U adalah unsur-unsur buatan dengan waktu paruh yang sangat pendek. Sukar untuk meramalkan perpanjangan daftar unsur semacam ini, tetapi sangat mungkin unsur baru akan sangat pendek waktu paruhnya.
Di Tabel 5.5, dirangkumkan hubungan antara tabel periodik dan konfigurasi elektron.
Tabel 5.5 Konfigurasi elektron tiap perioda.
periodorbital yang diisijumlah unsur
1 (pendek)1s2
2 (pendek)2s, 2p2 + 6 = 8
3 (pendek)3s, 3p2 + 6 = 8
4 (panjang)3d, 4s, 4p2 + 6 + 10 = 18
5 (panjang)4d, 5s, 5p2 + 6 + 10 = 18
6 (panjang) 4f, 5d, 6s, 6p2 + 6 + 10 + 14 = 32
Contoh Soal
5.1 Konfigurasi elektron lawrensium. Konfigurasi elektron 89Ac adalah 86Rn.6d17s2. Tuliskan konfigurasi elektron lawrensium 103Lr.
Jawab:
Lawrensium memiliki 14 elektron lebih banyak dari aktinium. Karena elektron akan mengisi orbital 5f, konfigurasi elektronnya 103Lr adalah 86Rn. 5f146d17s2.
Sebagaimana dipaparkan sebelumnhya, hukumMoseley menyatakan bahwa ada hubungan antara panjang gelombang λ sinar-X karakteristik unsur dan muatan listrik intinya Z (yakni, nomor atom): 1/λ = c(Z – s)2 (2.11)
Berkat hukum Moseley, unsur-unsur kini dapat disebut dengan menyebut nomor atomnya. Kini kita dapat dengan tepat mengetahui jumlah unsur di alam.

Sumber: http://www.chem-is-try.org/materi_kimia/kimia_dasar/sistem_periodik/tabel-periodik/

0 komentar:

Posting Komentar

 
Design by Wordpress Theme | Bloggerized by Free Blogger Templates | coupon codes